Carborane-Based Metal−Organic Framework with High Methane and Hydrogen Storage Capacities

نویسندگان

  • Robert D. Kennedy
  • Vaiva Krungleviciute
  • Daniel J. Clingerman
  • Joseph E. Mondloch
  • Yang Peng
  • Christopher E. Wilmer
  • Amy A. Sarjeant
  • Randall Q. Snurr
  • Joseph T. Hupp
  • Taner Yildirim
  • Omar K. Farha
  • Chad A. Mirkin
چکیده

A Cu−carborane-based metal−organic framework (MOF), NU-135, which contains a quasi-spherical para-carborane moiety, has been synthesized and characterized. NU-135 exhibits a pore volume of 1.02 cm/g and a gravimetric BET surface area of ca. 2600 m/g, and thus represents the first highly porous carborane-based MOF. As a consequence of the unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m/cm. CH4, CO2, and H2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in good agreement with computational predictions. The methane storage capacity of NU-135 at 35 bar and 298 K is ca. 187 vSTP/v. At 298 K, the pressure required to achieve a methane storage density comparable to that of a compressed natural gas (CNG) tank pressurized to 212 bar, which is a typical storage pressure, is only 65 bar. The methane working capacity (5−65 bar) is 170 vSTP/v. The volumetric hydrogen storage capacity at 55 bar and 77 K is 49 g/L. These properties are comparable to those of current record holders in the area of methane and hydrogen storage. This initial example lays the groundwork for carborane-based materials with high surface areas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carborane-based metal-organic frameworks as highly selective sorbents for CO(2) over methane.

Separation of CO(2)/CH(4) mixtures was studied in carborane-based metal-organic framework materials with and without coordinatively unsaturated metal sites; high selectivities for CO(2) over CH(4) ( approximately 17) are obtained, especially in the material with open metal sites.

متن کامل

Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities.

We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2) g(-1) ; to our knowledge, currently the highest published for Zr-based MOFs. CH4 /CO2 /H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreem...

متن کامل

Collaborative interactions to enhance gas binding energy in porous metal–organic frameworks

Metal-organic frameworks (MOFs) are potentially useful materials for hydrogen and methane storage. However, the weak interactions between the MOF host and gas guest molecules have limited their storage capacities at elevated temperatures. In this issue, Alkordi et al. [IUCrJ (2017), 4, 131-135] illustrate an example of a porous MOF with a suitable pore size and unique pore surface for enhanced ...

متن کامل

MWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property

In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...

متن کامل

Fabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors

High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013